Cyber Security: Privacy-Preserving Machine Learning: Secure Client-
Server Communication using AES Encryption.

Calvin Ssendawula
Adams State University
208 Edgemont Blvd. Unit 890
Alamosa. Colorado 81101
ssendawulac@adams.edu

Abstract—The transmission of sensitive data over insecure
networks poses a significant challenge in the modern digital era,
with threats such as data breaches and eavesdropping becoming
increasingly prevalent. To address this issue, this project
implements a lightweight, custom system for secure client-server
communication using AES encryption. AES, a symmetric
encryption algorithm, was chosen for its efficiency, security, and
suitability for real-time data protection.

Testing and implementation confirmed the systems’ ability to
securely transmit and decrypt sensitive client data without
reliance on external tools or HTTPS. The results demonstrate the
practical application of AES encryption in resource-constrained
environments, making it an effective solution for secure
communication over insecure networks. This project serves as a
foundation for future enhancements, such as integrating HTTPS,
dynamic salts, or broader encryption use cases.

Keywords— AES, encryption, confidentiality,
communication, flask, python

secure

I. INTRODUCTION

I an era of increasing digital dependency, the security of
transmitted data has become a critical concern. Data breaches
and eavesdropping incidents are on the rise, compromising
sensitive information and eroding trust in digital platforms.
Whether in financial transactions, medical records, or prevent
unauthorized access and ensure privacy. Modern networked
applications must address these challenges by adopting robust
mechanisms for secure communication, especially in
environments where traditional transport-layer security like
HTTPS may not be feasible. Symmetric encryption is a widely
used technique for securing data, where the same key is used
for both encryption and decryption. Among various symmetric
encryption algorithms, Advanced Encryption Standard (AES)
stands out due to its proven security, speed, and efficiency. AES
supports multiple key lengths (128, 192, or 256 bits), providing
flexibility and enhanced security for various applications. Its
compatibility with diverse platforms and resistance to most
known cryptographic attacks make it a popular choice for
securing sensitive data in both small-scale and large-scale
systems.

This project aims to design and implement a lightweight,
custom system for securely transmitting sensitive data over an
insecure network. By leveraging AES encryption and a Flask-
based server-client architecture, the solution demonstrates how
sensitive information can be encrypted on the client side,
securely transmitted to the server, and decrypted for further
use—all without relying on external debugging tools or
traditional HTTPS infrastructure. This approach highlights the

practical implementation of strong encryption techniques in
resource-constrained or controlled environments.

II. RELATED WORK

In Secure communication is a cornerstone of modern
networked systems, with established protocols like HTTPS,
TLS, and RSA providing robust methods to ensure data
confidentiality, integrity, and authenticity. HTTPS, for
example, secures communication by leveraging TLS (Transport
Layer Security), which combines symmetric encryption for
data protection and asymmetric methods like RSA for secure
key exchange. While widely adopted, HTTPS requires
certificate management and introduces overhead, making it less
ideal for lightweight or localized applications. Similarly, TLS
and SSL protocols are powerful but resource-intensive due to
their reliance on trusted Certificate Authorities (CAs) and the
computational cost of asymmetric encryption during
handshakes. RSA, though highly secure for key exchanges and
digital signatures, is computationally expensive and less suited
for encrypting large data payloads.

In specific scenarios, lightweight encryption methods like
AES (Advanced Encryption Standard) can be more practical
and efficient. Controlled environments, such as IoT systems or
intranet-based applications, often prioritize speed and
simplicity over external certificate validation. For example,
AES encryption with pre-shared secrets eliminates the need
for complex public key infrastructure, making it ideal for
secure communication in resource-constrained or localized
setups. Additionally, AES is particularly well-suited for
devices with limited computational power due to its efficiency
and minimal overhead, as opposed to the resource demands of
RSA or TLS.

PSEUDO CODE: CLIENT SIDE
Step 1: Generate encryption key
key = PBKDF2HMAC (password, salt)

Step 2: Encrypt data
iv = generate_random_iv()
ciphertext = AES_encrypt(key, plaintext, iv)

Step 3: Transmit data
send_json = {

"iv": iv.hex(),

"ciphertext'": ciphertext.hex()
}

response = send_to_server(send_json)

Print server's response
print(response)

PSEUDO CODE: SERVER SIDE

Step 1: Extract data

iv=get _iv_from_request() # Extract IV (hex) and convert
to bytes

ciphertext = get_ciphertext from_request() # Extract
ciphertext (hex) and convert to bytes

Step 2: Derive key and decrypt data
key = PBKDF2HMAC(password, salt)
plaintext = AES_decrypt(key, iv, ciphertext)

Step 3: Return decrypted data
response = {
"message'': '""Decryption successful",
"data'": plaintext

}

return response

ITI. APPROACH/ALGORITHM

In focuses on implementing secure client-server
communication using Advanced Encryption Standard (AES)
in Cipher Feedback (CFB) mode. The design leverages
symmetric encryption for its efficiency and practicality,
especially in controlled environments. The process is divided
into two main sections: client-side and server-side operations.
Each step emphasizes simplicity, security, and adaptability to
ensure sensitive data is transmitted securely over an insecure
network. On the client side, the first step involves generating a
robust encryption key. To achieve this, the PBKDF2HMAC
algorithm is used to derive a cryptographic key from a pre-
shared password and a salt. This process enhances security by
ensuring the key is both strong and unique to the session. The
use of a high iteration count in PBKDF2HMAC adds
computational complexity, making it significantly harder for
attackers to brute force the key. After the key is generated, the
plaintext data is encrypted using AES in CFB mode. This
encryption mode is particularly well-suited for streaming data
or variable-length messages as it avoids the need for padding.
A unique Initialization Vector (IV) is generated randomly for
each encryption session. The IV is essential for maintaining
security because it ensures that identical plaintexts encrypted
with the same key produce different ciphertexts. This
randomness helps protect the data from pattern analysis. The
encrypted data, along with the IV, is then formatted into a
JSON object for transmission. The IV and ciphertext are
converted to hexadecimal strings to ensure compatibility with
the HTTP protocol and JSON format. The JSON object is sent
to the server using an HTTP POST request. This
straightforward approach simplifies the client-server
interaction while ensuring the secure delivery of encrypted
data. On the server side, the process begins with receiving the
JSON payload. The server extracts the IV and ciphertext from
the payload and then independently derives the symmetric

encryption key using the same PBKDF2HMAC process. Since
the server and client share the same password and salt, they
can generate identical keys without exchanging them over the
network, reducing the risk of key compromise. Decryption is
performed using AES in CFB mode. The server decrypts the
ciphertext using the derived key and the IV extracted from the
payload. This process reverses the encryption performed on
the client side, converting the data back to its original
plaintext form. The server ensures the decrypted data matches
the expected format and content to validate its integrity. This
verification step is critical for ensuring the communication
process was not tampered with during transmission. To
enhance reliability, the server sends a response back to the
client confirming the successful decryption of the data. This
response typically includes the decrypted plaintext, allowing
the client to verify the accuracy of the operation. This
feedback mechanism provides a layer of assurance that the
transmission was both secure and successful. The choice of
AES in CFB mode simplifies implementation while
maintaining a high level of security. Unlike other modes, CFB
avoids padding-related complexities and is resilient to certain
types of attacks, making it an ideal choice for this project.
Additionally, the use of a random IV adds a dynamic layer to
the encryption process, further strengthening security.

IV.RESULTS

The results of this project demonstrate the
effectiveness of AES encryption in securely transmitting data
between a client and a server over an insecure network.
During the testing phase, plaintext messages were encrypted
on the client side, transmitted securely, and successfully
decrypted on the server side. For example, a plaintext message
like "Secure Communication Test" was encrypted into a
ciphertext such as "a3b8c!..." (hexadecimal format) and then
accurately decrypted back into the original plaintext on the
server.

Testing encompassed a variety of plaintext lengths to ensure
the system's robustness. Short messages, like single words,
and longer text bodies, such as paragraphs or JSON-formatted
strings, were transmitted without issues. The system
successfully encrypted and decrypted both cases, proving its
capability to handle varying data sizes. For example, a 500-
character message was encrypted and transmitted without
noticeable latency, ensuring the solution is practical for
moderate-sized payloads. Edge case testing included handling
plaintext containing special characters, numbers, and mixed
encoding formats, such as Unicode. Messages like

"P@3$SwOrd#123 7" were encrypted and decrypted correctly,
showing the system's ability to manage complex character
sets. This testing validated the solution's versatility and
reliability in real-world scenarios where user input or sensitive
data might contain special symbols. The random generation of
an Initialization Vector (IV) for each encryption session
ensured that even identical plaintext messages resulted in
unique ciphertexts. For instance, encrypting "Hello World"
multiple times produced different encrypted outputs, verifying
that the [V-based approach prevents patterns that could be
exploited by attackers. This feature strengthens the overall

security of the system by making pattern analysis infeasible.
Performance testing revealed minimal overhead during
encryption and decryption, even with longer plaintexts or high
iteration counts in the key derivation process. The use of AES
in Cipher Feedback (CFB) mode proved advantageous for
streaming data and variable-length messages, eliminating the
need for padding and maintaining efficient encryption and
decryption operations.

PS C:\Users\mukas\OneDrive\Desktop\CYBERSECURITY CLASS FILES\SECURE DATA TRANSMISSION> python server.p
y
* Serving Flask app 'server’
* Debug mode: on
WARNING: This is a development server. Do not use it in a production deployment. Use a production WSG]
server instead.
* Running on http://127.0.0.1:5600
Press CTRL+C to it
* Restarting with watchdog (windowsapi)
* Debugger is active!
* Debugger PIN: 173-847-739
* Detected change in 'C:\\Users\\mukas\\OneDrive\\Desktop\\CYBERSECURITY CLASS FILES\\SECURE DATA TR/
NSMISSION\\client.py', reloading
127.0.0.1 - - [11/Dec/2624 23:17:21] "POST /receive HTTP/1.1" 200 -
* Restarting with watchdog (windowsapi)
* Debugger is active!
* Debugger PIN: 173-847-739

NSMISSION\\venv\\Lib\\site-packages\\cryptography\\hazmat\\primitives\\kdf\\pbkdf2.py', reloading

* Detected change in 'C:\\Users\\mukas\\OneDrive\\Desktop\\CYBERSECURITY CLASS FILES\\SECURE DATA TRA
NSMISSION\\venv\\Lib\\site-packages\\cryptography\\hazmat\\primitives\\kdf_init__.py", reloading

* Detected change in 'C:\\Users\\mukas\\OneDrive\\Desktop\\CYBERSECURITY CLASS FILES\\SECURE DATA TRA
NSMISSION\\venv\\Lib\\site-packages\\cryptography\\hazmat\\primitives__init_ .py", reloading

* Detected change in 'C:\\Users\\mukas\\OneDrive\\Desktop\\CYBERSECURITY CLASS FILES\\SECURE DATA TRA
NSMISSION\\venv\\Lib\\site-packages\\cryptography\\hazmat\\primitives\\hashes.py", reloading

* Detected change in 'C:\\Users\\mukas\\OneDrive\\Desktop\\CYBERSECURITY CLASS FILES\\SECURE DATA TRA
NSMISSION\\venv\\Lib\\site-packages\\cryptography\\hazmat\\backends__init__.py", reloading

* Detected change in 'C:\\Users\\mukas\\OneDrive\\Desktop\\CYBERSECURITY CLASS FILES\\SECURE DATA TRA
NSMISSION\\venv\\Lib\\site-packages\\cryptography\\hazmat\\primitives\\ciphers__init__.py’, reloadi

g

* Detected change in 'C:\\Users\\mukas\\OneDrive\\Desktop\\CYBERSECURITY CLASS FILES\\SECURE DATA TRA
NSMISSION\\venv\\Lib\\site-packages\\cryptography\\hazmat\\primitives\\ciphers\\base.py"', reloading

* Detected change in 'C:\\Users\\mukas\\OneDrive\\Desktop\\CYBERSECURITY CLASS FILES\\SECURE DATA TRA
NSMISSION\\venv\\Lib\\site-packages\\cryptography\\hazmat\\primitives\\ciphers\\modes.py', reloading

* Detected change in 'C:\\Users\\mukas\\OneDrive\\Desktop\\CYBERSECURITY CLASS FILES\\SECURE DATA TRA
NSMISSION\\venv\\Lib\\site-packages\\cryptography\\hazmat\\primitives_cipheralgorithm.py", reloading

* Detected change in "C:\\Users\\mukas\\OneDrive\\Desktop\\CYBERSECURITY CLASS FILES\\SECURE DATA TRA
NSMISSION\\venv\\Lib\\site-packages\\cryptography\\hazmat\\primitives\\ciphers\\algorithms.py", reload
ing

* Restarting with watchdog (windowsapi)

* Debugger is active!

* Debugger PIN: 173-847-739

........ L... = Pusn: deu
+0.. = Reset: Not set
Syn: Not set
Fin: Not set
TCP Flags: ceeAPees
Window: 561

Calculated window size: 64128

Window size scaling factor: 128

Checksum: 0x7242 [unverified]

Checksum Status: Unverified

Urgent Pointer: @

Timestamps

Time since first frame in this TCP stream: 0.056294000 seconds
Time since previous frame in this TCP stream: ©.000000000 seconds
SEQ/ACK analysis

iRTT: 0.027309000 seconds

Bytes in flight: 2772

Bytes sent since last PSH flag: 2772

TCP payload (1386 bytes)

TCP segment data (1386 bytes)

V. CONCLUSION

This project addressed the critical issue of secure data
transmission over inherently insecure networks, where
sensitive information is often at risk of being intercepted or
manipulated. The primary objective was to create a
lightweight and efficient system for secure communication,
leveraging the Advanced Encryption Standard (AES) to
ensure confidentiality and data integrity. By focusing on a
controlled client-server setup, the project offered a practical
solution for secure data exchange in scenarios where
traditional methods like HTTPS may be excessive or

impractical. The implemented solution combined AES
encryption in Cipher Feedback (CFB) mode with Python's
robust cryptography libraries and a Flask-based server for data
transmission. The client securely encrypted plaintext data
using AES with a randomly generated Initialization Vector
(IV) and transmitted the ciphertext alongside the IV to the
server. On the server side, the system decrypted the data and
validated its integrity before sending a response. This end-to-
end process successfully ensured that data remained protected
throughout the transmission.

The project demonstrated tangible results by encrypting and
decrypting diverse types of data, including short messages,
long strings, and special characters, without compromising
security or performance. The use of PBKDF2HMAC for key
derivation ensured that the encryption keys were derived
securely from passwords and salts, further enhancing the
system’s resilience against brute force attacks. Testing
confirmed that the system could handle a variety of edge cases
while maintaining reliability and efficiency. One of the key
achievements of this project was its ability to balance security
with simplicity. By avoiding the complexities associated with
certificate management and relying on pre-shared secrets for
key generation, the system highlighted the feasibility of
lightweight encryption methods in controlled environments.
This makes the solution particularly suitable for applications
such as IoT devices, localized systems, or prototypes where
implementing traditional security protocols may not be
practical. The successful implementation of AES encryption
also highlighted its practical applications for modern secure
communication needs. The use of Flask as the server
framework and Python as the programming language
facilitated rapid development and integration, showcasing the
flexibility of these tools in building secure systems. The
project stands as a testament to the effectiveness of combining
well-established cryptographic principles with accessible
development frameworks. While the project achieved its
goals, it also identified areas for future enhancement. For
example, integrating dynamic salts for key derivation, adding
support for file encryption, or incorporating additional
authentication layers would further strengthen the system's
security and expand its potential applications. These
improvements could make the system more robust and
adaptable to a broader range of use cases.

1.

REFERENCES:

NIST: "Advanced Encryption Standard (AES),"
Federal Information Processing Standards
Publication 197 (FIPS 197), U.S. Department of
Commerce/National Institute of Standards and
Technology, 2001. [Online]. Available:
https://doi.org/10.6028/NIST.FIPS.197

Python Cryptography Library
Documentation: "cryptography 41.0.1:
Encrypting with AES," Cryptography.io, Python
Software Foundation. [Online]. Available:
https://cryptography.io/en/latest/

10.

11.

12.

Flask Documentation: "Flask: Full-featured
Python web framework," Pallets Projects.
[Online]. Available:
https://flask.palletsprojects.com/
RFC 2898: "PKCS #5: Password-Based
Cryptography Specification Version 2.0," B.
Kaliski, RSA Laboratories, September 2000.
[Online]. Available: https://www.rfc-
editor.org/rfc/rfc2898
Daemen, J., & Rijmen, V.: The Design of
Rijndael: AES - The Advanced Encryption
Standard. Berlin, Germany: Springer-Verlag,
2002.
Katz, J., & Lindell, Y.: Introduction to Modern
Cryptography, 2nd ed. Boca Raton, FL, USA:
CRC Press, 2014.
O'Reilly Media: Violent Python: A Cookbook
for Hackers, Forensic Analysts, Penetration
Testers and Security Engineers. Python for
practical cryptography applications.
OWASP Foundation: "Introduction to
Cryptography," OWASP Cheatsheets. [Online].
Available: https://cheatsheetseries.owasp.org
Stack Overflow Discussions: Practical
challenges in implementing AES encryption in
Python. [Online]. Available:
https://stackoverflow.com/questions
IBM Developer Blog: "AES Encryption
Implementation: Security Best Practices," IBM.
[Online]. Available: https://developer.ibm.com/
S. Guha, S. S. Yau and A. B. Buduru, "Attack
Detection in Cloud Infrastructures Using
Artificial Neural Network with Genetic Feature
Selection," 2016 IEEE 14th Intl Conf on
Dependable, Autonomic and Secure Computing,
14th Intl Conf on Pervasive Intelligence and
Computing, 2nd Intl Conf on Big Data
Intelligence and Computing and Cyber Science
and Technology
Congress(DASC/PiCom/DataCom/CyberSciTec
h), Auckland, New Zealand, 2016, pp. 414-419,
doi: 10.1109/DASC-PICom-DataCom-
CyberSciTec.2016.32. keywords: {Feature
extraction;Cloud computing; Testing;Genetic
algorithms; Training; Training data;Multi-layer
neural network;Cloud infrastructures;cyber-
attack detection;artificial neural network;feature
selection;genetic algorithm},

Y. Pu,J. Luo, Y. Wang, C. Hu, Y. Huo and J.
Zhang, "Privacy Preserving Scheme for
Location Based Services Using Cryptographic
Approach," 2018 IEEE Symposium on Privacy-
Aware Computing (PAC), Washington, DC,

USA, 2018, pp. 125-126, doi:
10.1109/PAC.2018.00022. keywords:
{Servers;Privacy;Encryption;Data
privacy;Resistance;Privacy Preservation,
Location Based Services, Identity-Based
Encryption},

